
02/12/2014

1

Lecture 10: Fault Tolerance

Fault Tolerant Concurrent Computing 

• The main principles of fault tolerant programming are:

– Fault Detection - Knowing that a fault exists

– Fault Recovery - having atomic instructions that can be 

rolled back in the event of a failure being detected.

• System’s viewpoint it is quite possible that the fault is in 

the program that is attempting the recovery. 

• Attempting to recover from a non-existent fault can be as 

disastrous as a fault occurring.

CA463 Lecture Notes (Martin Crane 2014) 26



02/12/2014

2

Fault Tolerant Concurrent Computing 

(cont’d)

• Have seen replication used for tasks to allow a program to 

recover from a fault causing a task to abruptly terminate. 

• The same principle is also used at the system level to build 

fault tolerant systems. 

• Critical systems are replicated, and system action is based 

on a majority vote of the replicated sub systems. 

• This redundancy allows the system to successfully continue 

operating when several sub systems develop faults.

CA463 Lecture Notes (Martin Crane 2014) 27

Types of Failures in Concurrent Systems

• Initially dead processes (benign fault)

– A subset of the processes never even start

• Crash model (benign fault)

– Process executes as per its local algorithm until a 

certain point where it stops indefinitely 

– Never restarts

• Byzantine behaviour (malign fault)

– Algorithm may execute any possible local algorithm

– May arbitrarily send/receive messages

CA463 Lecture Notes (Martin Crane 2014) 28



02/12/2014

3

A Hierarchy of Failure Types

• Dead process 

– This is a special case of crashed process

– Case when the crashed process crashes before it starts 

executing

• Crashed process 

– This is a special case of Byzantine process

– Case when the Byzantine process crashes, and then 

keeps staying in that state for all future transitions

CA463 Lecture Notes (Martin Crane 2014) 29

Types of Fault Tolerance Algorithms
• Robust algorithms

– Correct processes should continue behaving thus, despite failures.

– These algorithms tolerate/mask failures with replication & voting.

– Never wait for all processes as processes could fail.

– Usually deal with permanent faults.

– Usually tolerate: �/2 benign, �/3 malign failures for � processes.

– Study of robust algorithms centres around decision problems

• (Self-)Stabilizing algorithms

– Processes could fail, but eventually become correct.

– System can start in any state (possibly temporally faulty), but 

should eventually resume correct behaviour.

– This eventually is known as the stabilization period

CA463 Lecture Notes (Martin Crane 2014) 30



02/12/2014

4

Types of Fault Tolerance Algorithms (cont’d)

• Robust (Self-)Stabilizing algorithms

– As seen, system can start in any state (possibly temporally faulty), 

but should eventually resume correct behaviour.

– BUT during stabilization period, Self-Stabilizing systems do not 

guarantee any property

– A (self-)stabilizing algorithm is robust if able to quickly start 

working correctly regardless of initial state, not just mask faults.

– So, not only is it self-stabilizing but it also guarantees that:

• After a short time, a basic service is resumed;

• Basic service maintained until when optimum service resumed.

CA463 Lecture Notes (Martin Crane 2014) 31

Decisions in Robust Algorithms

• Robust algorithms typically try to solve some decision 

problem in which each correct process irreversibly 

“decides” 

• There are 3 requirements for decision problems:

– Termination (All correct processes eventually decide but don’t 

indefinitely wait for all processes to reply)

– Consistency (All correct processes’ decisions should be related)

– Non-triviality (Processes should communicate to solve the 

problem).

CA463 Lecture Notes (Martin Crane 2014) 32



02/12/2014

5

Typical Fault Tolerant Architecture

• Have seen that not all sub-systems fail gracefully. 

• Instead it continues to operate, generating incorrect data. 

• Such problems are called Byzantine Generals problems.

• Diagram above shows how such problems could be 

handled using a Comparitor.

CPU1

CPU2

CPU3

Comparitor

output 

device

input 

sensor 1

input 

sensor 2

CA463 Lecture Notes (Martin Crane 2014) 33

The Byzantine Generals Problem

• This generalises the situation where faulty processes are 

actively traitorous.

• They send messages to others intending to cause a system 

failure.

• Units of the Byzantine army are preparing to enter a battle. 

• A general leads each unit, and all generals communicate 

with each other by sending messengers. 

• These messengers:

– Do not alter a message once it is given to them.

– Always make to their destination.

– Always identify the sender of the message.

CA463 Lecture Notes (Martin Crane 2014) 34



02/12/2014

6

The Byzantine Generals Problem (cont’d)

• Generals have pre-arranged a set of alternative actions, 

such as attack, retreat, or hold a position. 

• The goal is to develop an algorithm such that:

1. All loyal generals take the same decision.

2. Every loyal general must base his decision on correct information 

from every other loyal general.

CA463 Lecture Notes (Martin Crane 2014) 35

The Byzantine General Algorithm for One 

Traitorous General

• One general, the commander, decides on an initial decision. 

The remaining generals are called lieutenants. 

• The algorithm for one traitorous general is:

1. Commander sends his decision.

2. Each lieutenant relays the commander’s decision to every other 

lieutenant.

3. Upon receiving both the direct message from the commander 

and the relayed messages from the other lieutenants, the 

lieutenant decides on an action my majority vote.

CA463 Lecture Notes (Martin Crane 2014) 36



02/12/2014

7

The Byzantine General Algorithm for One 

Traitorous General

• If a lieutenant traitorous, each loyal lieutenant will receive 

– (� − 3) correct messages from other loyal lieutenants, 

– a correct message from the commander, 

– and an incorrect message from the traitor. 

• In order for there to be a majority n must be greater than 3

• There is no known solution for only 3 generals.
Commander

Lieutenant 2Lieutenant 1 Lieutenant 3

A

A

A

A

A

A

A

R

R

CA463 Lecture Notes (Martin Crane 2014) 37

The Byzantine General Algorithm cont’d: 

Traitorous Commander

• For a traitorous commander, it doesn’t matter what 

messages he sends, as all lieutenants are loyal they will 

relay messages received from the commander. 

• Each lieutenant receives the exact same set of messages. 

• Since lieutenants all react the same way on the information 

they receive, they will all make the same decision.
Commander

Lieutenant 2Lieutenant 1 Lieutenant 3

A

R

H

A

R

R

A

H

H

CA463 Lecture Notes (Martin Crane 2014) 38



02/12/2014

8

Byzantine General for Two Traitorous Generals
1. Commander sends his decision to each of the � − 1 lieutenants. 

� This is called the level-2 message.

2. Each lieutenant � sends the level-2 message to each of the � − 2

other lieutenants. This is a level-1 message �(�).

3. Each lieutenant � sends each of the � − 3 level-1 messages �(�) to 

the other � − 2 lieutenants. This is a level-0 message �(�,�).

4. Eventually each lieutenant � receives � − 2 messages from lieutenant 

�; one level-1 message � � 	& � − 3 level-0 messages � �,� 	� ≠ �.

� Using majority vote (ie � − 2	 odd) lieutenant � can determine a value for 

lieutenant �.

5. Using the � − 2 values from the other lieutenants and the level 2

message from the commander (commander could be traitor, after 

all), lieutenant � can use majority voting to determine his action.

In general an algorithm exists if less than a third of generals are 

traitorous.
CA463 Lecture Notes (Martin Crane 2014) 39

Byzantine General for Two Traitorous Generals (cont’d)

C

Commander

1 2 3 4 5 6

Attack Attack

Attack Attack

Attack Attack

v(2)=R

v(2)=R

v(2)=R

v(2)=R

v(2)=R

Level 1 , Level 2 Msges Sent 

by Traitor and Commander (resp):

C

Commander

1 2 3 4 5 6

Attack Attack

Attack Attack

Attack Attack

v(3)=A

v(3)=A

v(3)=A

v(3)=A

v(3)=A

Level 1, Level 2 Msges Sent by Loyal 

Lieutenant and Commander (resp):

CA463 Lecture Notes (Martin Crane 2014) 40



02/12/2014

9

Byzantine General for Two Traitorous Generals (cont’d)

1
v(2)=R

v(3)=A

v(4)=R

v(5)=A

v(6)=A

Level 1 Messages Received by 1 Level 0 Messages Sent by 1 to 2

1
v(5,1)=A

v(6,1)=A

v(4,1)=R v(3,1)=A

Level/From 1 2* - 4* 5 6

Level 0 RARA RAAA - RAAA RARA RARA

Level 1 A R - R A A

Majority 

Decision on 

others

A A A A A

Level 2 A

What messages does (e.g.) Lieutenant 3 get?:

CA463 Lecture Notes (Martin Crane 2014) 41


